Gevorderd 1 - werken met lineaire formules

Wil jij online oefenen met het onderwerp Gevorderd 1 - werken met lineaire formules? Of wil je andere wiskunde onderwerpen online oefenen? Dat kan op een leuke en leerzame manier met de oefensoftware van Slimleren. probeer Slimleren nu vrijblijvend een week gratis uit, en ontdek hoe makkelijk het werkt!

Gevorderd 1 - werken met lineaire formules

Met Slimleren oefen je online op een leuke en efficiënte manier stof uit de les. Kom je ergens niet uit? Dan past het systeem automatisch het niveau aan en geeft handige tips. Zo loop je nooit meer vast en worden zelfs de moeilijkste onderwerpen een fluitje van een cent.

Hieronder zie je de theorie van het onderwerp Gevorderd 1 - werken met lineaire formules, met Slimleren kun je vragen over dit onderwerp (en honderden andere onderwerpen) oefenen. Je krijgt direct feedback als je een vraag fout beantwoordt en ziet gemakkelijk welke onderwerpen nog wat extra aandacht nodig hebben. Zo ben je altijd voorbereid op toetsen en ga je fluitend het schooljaar door.

Gevorderd 1 - werken met lineaire formules
  • lineaire formules
  • lineaire vergelijkingen
  • lineaire functies
  • lineaire grafieken
  • richtingscoëfficiënt
  • lineaire formule opstellen
  • de formule van een lijn opstellen

  Video

  Theorie

Uitdaging

In de wiskunde wordt er veel gewerkt met formules. Een veel voorkomende formule is: y = ax + b. Dit is de algemene vorm van een lineaire formule en binnen deze formule bestaat een lineair verband tussen x en y. Dat betekent dat als de waarde van x met even grote stapjes omhoog/omlaag gaat, dat de waarde van y dan ook met even grote stapjes (die groter of kleiner kunnen zijn) omhoog/omlaag gaat.

In deze theorie leggen we je uit hoe je kunt rekenen met lineaire formules.

Methode

De richtingscoëfficiënt en de constante

De grafiek van de lineaire formule y = ax + b is een lijn met de volgende gegevens:

  • a is de richtingscoëfficiënt
  • b is de constante (ook wel begingetal of startgetal genoemd)

De richtingscoëfficiënt a geeft aan in welke mate de lijn stijgt of daalt en is te berekenen met de volgende formule:

$$\mbox{richtingscoëfficiënt }a=\frac{\mbox{verticale afstand}}{\mbox{horizontale afstand }}$$

De constante b brengt de grafiek omlaag of omhoog. Het geeft aan waar de grafiek de y-as snijdt. Het snijpunt met de y-as is altijd bij x = 0. Je kunt b dus berekenen door voor x = 0 de formule uit te rekenen.

Formules hebben niet altijd de letter x en y. Zo kan een formule over bijvoorbeeld kosten en aantal uren werk zijn K = 10u + 20. In dit geval noem je de x-as u en de y-as noem je K.

Formule bepalen van een lijn

Indien er een lijn wordt gegeven en je wilt daar de formule bij weten, dankan dat aan de hand van de volgende stappen:

  • Stap 1: Bedenk dat de vorm van de formule ax b is.
  • Stap 2: Bereken b door x = 0 in te vullen in de formule.
  • Stap 3: Bereken a met behulp van de formule: $$\mbox{richtingscoëfficiënt }a=\frac{\mbox{verticale afstand}}{\mbox{horizontale afstand }}$$
  • Stap 4: Schrijf de formule op

Voorbeeld

In het assenstelsel met de rode grafiek kun je zien dat de lijn met elk blokje naar rechts tegelijkertijd 3 blokjes omhoog gaat. De richtingscoëfficiënt a is dus 3. Verder is te zien dat op x = 0 de lijn de y-as snijdt op y = 1. Het snijpunt met de y-as is dus (0,1). Dit betekent direct ook dat b = 1.

De lineaire vergelijking is dus y = 3x + 1.

Bij de rode grafiek kun je duidelijk zien hoeveel de lijn stijgt. Maar helaas is dit niet altijd direct af te lezen. Zoals bijvoorbeeld te zien is in de blauwe grafiek. Hier kun je niet aflezen hoeveel de grafiek daalt per stapje naar rechts. Je kunt dit wel berekenen. Hiervoor zoek je 2 punten op de grafiek die je wel duidelijk kunt aflezen. Je ziet dat de blauwe grafiek precies door punt (0,2) en punt (5,0) gaat. Vervolgens bereken je de richtingscoëfficiënt met de formule:

$$\mbox{Richtingscoëfficiënt } a = \frac{\mbox{verticale afstand}}{\mbox{horizontale afstand}} = -\frac{\mbox{2}}{\mbox{4}} = -0,4$$.

Let op: deze richtingscoëfficiënt is negatief, omdat het om een dalende lijn gaat. Je zet er dus een min voor.

Met Slimleren kun je op een leuke manier thuis extra oefenen met de vakken waar jij moeite mee hebt. Zo ben je beter voorbereid en heb je nooit meer stress voor toetsen.

  Vuistregels

  • Lineaire formule is y = ax + b.
  • De richtingscoëfficiënt van een dalende lijn is een negatief getal.

  Voorbeeldvraag

Hier zie je de grafiek van de lineaire formule y = 2x - 3. Beantwoord de volgende vragen:

a. Ligt punt P(2,5;2) op lijn k?

b. Ligt punt M(2,3) op lijn k?

 

Uitwerking

a. Om dit na te gaan vul je de x-coördinaat in de formule in. Als de juiste y-coördinaat eruit komt weet je dat punt P op de lijn ligt.

y = 2 · 2,5 - 3 = 2

Dus punt P (2,5;2) ligt op lijn k.

b. Om dit na te gaan vul je de x-coördinaat in de formule in. Als de juiste y-coördinaat eruit komt weet je dat punt P op de lijn ligt.

y= 2 · 2 - 3 = 1

Dus punt P (2,3) ligt niet op lijn k.

… meer dan 25.000 leerlingen met
Slimleren oefenen…
… en dat zij Slimleren gemiddeld
beoordelen met een 9,2!

Wat is Slimleren nou eigenlijk?

Met Slimleren oefen je online voor de vakken waar je nog wat moeite mee hebt, waar en wanneer je maar wilt. Theorie-uitleg, video-colleges, vuistregels en meer helpen jou om de stof sneller te begrijpen. Daarnaast krijg je bij ieder fout gegeven antwoord direct een heldere uitleg hoe je de vraag het beste kunt oplossen. Zo leer je sneller en effectiever; dat is pas Slimleren!

Waarom kiezen voor Slimleren?

Onderdeel worden van ons multidisciplinaire team? Dat kan! We zijn op zoek naar starters in de zorg, maar ook naar medisch specialisten en GZ-psychologen. Eén ding staat daarbij vast: je vult je functie anders in dan je gewend bent. Vind de vacature die bij je past en solliciteer!

Leuk leren!?

Leren wordt leuker met Slimleren! Verzamel diamanten, speel mini-games en bereik gouden resultaten.

Goedkoper dan bijles

Slimleren is niet alleen leuker, maar ook veel goedkoper. Voor de prijs van 30 min bijles krijg je een hele maand Slimleren, al vanaf €8,95.

Geen stress

Met Slimleren houd je eenvoudig je voortgang bij en bereid je je optimaal voor op toetsen. Geen verrassingen meer!

Betere schoolresultaten

Ervaar volledig adaptieve programma's door ons. Ons systeem speelt slim in op jouw uitdagingen. Leuker én effectiever leren!

Slimleren is er voor iedereen

Met Slimleren oefen je online voor de vakken waar je nog wat moeite mee hebt, waar en wanneer je maar wilt. Theorie-uitleg, video-colleges, vuistregels en meer helpen jou om de stof sneller te begrijpen. Onze programma's zijn gericht op leerlingen van groep 5 tot en met groep 8 van de basisschool en klas 1 tot en met klas 3 van de middelbare school. Of je nu wat moeite hebt met een bepaald vak, of juist vooruit wilt werken; Slimleren is er voor iedereen.

Wil jij ook jouw kind laten kennismaken me Slimleren? Probeer nu onze programma's voor thuis 1 week gratis en vrijblijvend uit.