Een introductie van de lineaire formule

Wil jij online oefenen met het onderwerp Een introductie van de lineaire formule? Of wil je andere wiskunde onderwerpen online oefenen? Dat kan op een leuke en leerzame manier met de oefensoftware van Slimleren. probeer Slimleren nu vrijblijvend een week gratis uit, en ontdek hoe makkelijk het werkt!

Een introductie van de lineaire formule

Met Slimleren oefen je online op een leuke en efficiënte manier stof uit de les. Kom je ergens niet uit? Dan past het systeem automatisch het niveau aan en geeft handige tips. Zo loop je nooit meer vast en worden zelfs de moeilijkste onderwerpen een fluitje van een cent.

Hieronder zie je de theorie van het onderwerp Een introductie van de lineaire formule, met Slimleren kun je vragen over dit onderwerp (en honderden andere onderwerpen) oefenen. Je krijgt direct feedback als je een vraag fout beantwoordt en ziet gemakkelijk welke onderwerpen nog wat extra aandacht nodig hebben. Zo ben je altijd voorbereid op toetsen en ga je fluitend het schooljaar door.

Een introductie van de lineaire formule
  • richtingscoëfficiënt
  • constante
  • begingetal
  • snijpunt y-as
  • lineaire grafiek
  • lineaire formules

  Video

  Theorie

Uitdaging

In de wiskunde wordt er veel gewerkt met formules. Een veel voorkomende formule is: y = ax + b. Dit is de algemene vorm van een lineaire formule en binnen deze formule bestaat een lineair verband tussen x en y. Dat betekent dat als de waarde van x met even grote stapjes omhoog/omlaag gaat, dat de waarde van y dan ook met even grote stapjes (die groter of kleiner kunnen zijn) omhoog/omlaag gaat.

In deze theorie leggen we je uit hoe een lineaire formule eruit ziet en hoe je de richtingscoëfficiënt (de a in de formule) en de constante (de b in de formule) bepaalt.

Methode

De richtingscoëfficiënt en de constante

De grafiek van de lineaire formule y = ax + b is een lijn met de volgende gegevens:

  • a is de richtingscoëfficiënt
  • b is de constante (ook wel begingetal of startgetal genoemd)

De richtingscoëfficiënt a geeft aan in welke mate de lijn stijgt of daalt en is te berekenen met de volgende formule:

$$\mbox{richtingscoëfficiënt }a=\frac{\mbox{verticale afstand}}{\mbox{horizontale afstand }}$$

De constante b brengt de grafiek omlaag of omhoog. Het geeft aan waar de grafiek de y-as snijdt. Het snijpunt met de y-as is altijd bij x = 0. Je kunt b dus berekenen door voor x = 0 de formule uit te rekenen.

Formule bepalen van een lijn

Indien er een lijn wordt gegeven en je wilt daar de formule bij weten, dankan dat aan de hand van de volgende stappen:

  • Stap 1: Bedenk dat de vorm van de formule ax b is.
  • Stap 2: Bereken b door x = 0 in te vullen in de formule.
  • Stap 3: Bereken a met behulp van de formule: $$\mbox{richtingscoëfficiënt }a=\frac{\mbox{verticale afstand}}{\mbox{horizontale afstand }}$$
  • Stap 4: Schrijf de formule op
Met Slimleren kun je op een leuke manier thuis extra oefenen met de vakken waar jij moeite mee hebt. Zo ben je beter voorbereid en heb je nooit meer stress voor toetsen.

  Vuistregels

  • De grafiek van een lineaire formule is een rechte lijn.
  • a is de richtingscoëfficiënt
    $$\mbox{richtingscoëfficiënt }a=\frac{\mbox{verticale afstand}}{\mbox{horizontale afstand }}$$
  • b is de constante (ook wel begingetal of startgetal genoemd)
    Je kunt b berekenen door voor x = 0 de formule uit te rekenen.
  • Als de coördinaten van een punt kommagetallen zijn, scheid je die getallen met een puntkomma i.p.v. met een komma, bijvoorbeeld (3,5;2,8).
  • In een formule kunnen ook andere letters (dan x en y) gebruikt worden.

  Voorbeeldvraag

In de afbeelding is een grafiek weergegeven van de lineaire formule y = ax + b.

a. Wat zijn de waarden van a en b? Gebruik de grafiek.
b. Wat betekent de waarde van a?
c. Wat betekent de waarde van b?

 

Uitwerking

a. Ten eerste zoek je het snijpunt van de lijn met de y-as door x = 0 in te vullen in de formule. Hier komt uit y = -3 en dat betekent dus dat b = -3.

Ten tweede bereken je de richtingscoëfficiënt a: $$a=\frac{2}{1}=2$$

Als laatste schrijf je de formule op, in dit geval dus als volgt: y = 2x - 3.

b. Dit betekent dat de lijn voor elke stap naar rechts, 2 stappen omhoog gaat.

c. Dit betekent dat de lijn de y-as snijdt bij x = 0 en y = -3.

… meer dan 25.000 leerlingen met
Slimleren oefenen…
… en dat zij Slimleren gemiddeld
beoordelen met een 9,2!

Wat is Slimleren nou eigenlijk?

Met Slimleren oefen je online voor de vakken waar je nog wat moeite mee hebt, waar en wanneer je maar wilt. Theorie-uitleg, video-colleges, vuistregels en meer helpen jou om de stof sneller te begrijpen. Daarnaast krijg je bij ieder fout gegeven antwoord direct een heldere uitleg hoe je de vraag het beste kunt oplossen. Zo leer je sneller en effectiever; dat is pas Slimleren!

Waarom kiezen voor Slimleren?

Onderdeel worden van ons multidisciplinaire team? Dat kan! We zijn op zoek naar starters in de zorg, maar ook naar medisch specialisten en GZ-psychologen. Eén ding staat daarbij vast: je vult je functie anders in dan je gewend bent. Vind de vacature die bij je past en solliciteer!

Leuk leren!?

Leren wordt leuker met Slimleren! Verzamel diamanten, speel mini-games en bereik gouden resultaten.

Goedkoper dan bijles

Slimleren is niet alleen leuker, maar ook veel goedkoper. Voor de prijs van 30 min bijles krijg je een hele maand Slimleren, al vanaf €8,95.

Geen stress

Met Slimleren houd je eenvoudig je voortgang bij en bereid je je optimaal voor op toetsen. Geen verrassingen meer!

Betere schoolresultaten

Ervaar volledig adaptieve programma's door ons. Ons systeem speelt slim in op jouw uitdagingen. Leuker én effectiever leren!

Slimleren is er voor iedereen

Met Slimleren oefen je online voor de vakken waar je nog wat moeite mee hebt, waar en wanneer je maar wilt. Theorie-uitleg, video-colleges, vuistregels en meer helpen jou om de stof sneller te begrijpen. Onze programma's zijn gericht op leerlingen van groep 5 tot en met groep 8 van de basisschool en klas 1 tot en met klas 3 van de middelbare school. Of je nu wat moeite hebt met een bepaald vak, of juist vooruit wilt werken; Slimleren is er voor iedereen.

Wil jij ook jouw kind laten kennismaken me Slimleren? Probeer nu onze programma's voor thuis 1 week gratis en vrijblijvend uit.